Course details
This qualification has two stages, each comprising 120 credits.
- Stage 1 has with one 30-credit mathematics, one 30-credit statistics and two 30-credit computing & IT modules.
- In Stage 2, you’ll study one 30-credit applied mathematics module, two 30-credit statistics modules and one 30-credit computing & IT module.
You’ll study a range of fundamental topics in mathematics, statistics and computing.
You’ll deepen your understanding of statistics, learn about a variety of mathematical methods, and become a computational thinker.
We regularly review our curriculum; therefore, the qualification described on this page – including its availability, its structure, and available modules – may change over time. If we make changes to this qualification, we’ll update this page as soon as possible. Once you’ve registered or are studying this qualification, where practicable, we’ll inform you in good time of any upcoming changes. If you’d like to know more about the circumstances in which the University might make changes to the curriculum, see our Academic Regulations or contact us. This description was last updated on 17 March 2021.
Accessibility
We make all our qualifications as accessible as possible and have a comprehensive range of services to support all our students. The Diploma of Higher Education in Data Analysis uses a variety of study materials and has the following elements:
- studying a mixture of printed and online material – online learning resources may include websites, audio/video media clips, and interactive activities such as online quizzes
- using mathematical and scientific expressions, notations and associated techniques
- using and/or producing diagrams and/or screenshots
- undertaking practical work
- using specialist software, including tools for programming languages
- finding external/third-party material online
- face-to-face tutorials/day schools and/or online tutorials
- continuous and end-of-module assessment in the form of short and long answer questions, and in many cases an examination
- using feedback: continuous assessment involves receiving detailed feedback on your work from your tutor and using this feedback to improve your performance
- engagement with learning and assessment within a pre-determined schedule or timetable – time management will be needed during your studies and the University will help you to develop these skills throughout your qualification.
For more detailed information, see the Accessibility Statements on individual module descriptions. If you feel you may need additional support, visit Disability support to find more about what we offer. Contact us as soon as possible to discuss your individual requirements, so we can put arrangements in place before you start.
Learning outcomes, teaching and assessment
This qualification develops your learning in four main areas:
- Knowledge and understanding
- Cognitive skills
- Practical and professional skills
- Key skills
The level and depth of your learning gradually increases as you work through the qualification. You’ll be supported throughout by the OU’s unique style of teaching and assessment – which includes a personal tutor to guide and comment on your work; top quality course texts; elearning resources like podcasts, interactive media and online materials; tutorial groups and community forums.
Read the detailed learning outcomes here
Credit transfer
If you’ve already completed some study at another university, you may be able to count it towards your Open University qualification – reducing the number of modules you need to study.
You should apply for credit transfer before you register, at least 4 weeks before the registration closing date. Just tell us what you studied, where and when, and we’ll compare this against the learning outcomes for your chosen course.
For more details and an application form, visit our Credit Transfer website.
On completion
On completion of this undergraduate course, we'll award you the Diploma of Higher Education in Data Analysis.
Recognition in your country
If you intend to use your Open University qualifications to seek work or undertake further study outside the UK, we recommend checking whether your intended qualification will meet local requirements for your chosen career. Read recognition in my country.
Regulations
As a student of The Open University, you should be aware of the content of the qualification-specific regulations below and the academic regulations that are available on our Student Policies and Regulations website.
Entry requirements
There is no formal pre-requisite study, but you must have the required mathematical skills to study the compulsory module Essential mathematics 1 (MST124), including:
- algebraic manipulation and solving equations
- quadratics and parabolas
- geometry and trigonometry
- exponentials and logarithms.
You can check you’re ready for MST124 and see the topics it covers here.
If you don’t feel you have the required mathematical skills, you can study an additional module, Discovering mathematics (MU123), to give you the knowledge and skills you need. Contact us to find out more.
Ideally, you’ll also have some basic knowledge of computing.
Talk to an advisor if you’re not sure you’re ready.
How much time do I need?
This depends on your level of prior knowledge of mathematics and, in general, it is recommend that you build up your pace of study slowly to ensure you gain a good understanding of the more basic topics. How many credits you can complete in a year will depend on your study situation, and this qualification is designed to enable you to vary your study intensity from year to year.
- Most of our students study part time, completing 60 credits a year.
- This will usually mean studying for 16–18 hours a week.
Skills for career development
The ability to analyse data is a much sought after skill in the modern workplace. The diploma will equip you with a strong foundation knowledge of data analysis and modelling from statistics, applied mathematics and computer science. In addition, you’ll develop important transferable skills such as communication, time management and problem solving.
Career relevance
Data analysts and programmers are highly sought after in virtually all work places. The use of data analysis in social media, online commerce and government has revolutionised the digital economy, with employers across both the public and private sectors now recruiting data analysts to solve complex business problems at the heart of supporting strategic and operational decision making. Students are well placed to develop their expertise in all areas of employment including business intelligence, management, biology, economics, education, engineering, environment studies, finance, government, logistics, medicine, meteorology, market research, sport and multinational businesses.
In addition to improving your career prospects, studying with the OU is an enriching experience that broadens your horizons, develops your knowledge, builds your confidence and enhances your life skills.
Exploring your options
Once you register with us (and for up to three years after you finish your studies), you’ll have full access to our careers service for a wide range of information and advice – including online forums, website, interview simulation, vacancy service as well as the option to email or speak to a careers adviser. Some areas of the careers service website are available for you to see now, including help with looking for and applying for jobs. You can also read more general information about how OU study enhances your career.
In the meantime, if you want to do some research around this qualification and where it might take you, we’ve put together a list of relevant job titles as a starting point (note that some careers may require further study, training and/or work experience beyond your degree):
- applied mathematician
- business analyst
- business manager
- chief data officer
- computer scientist
- data analyst
- data architect
- data engineer
- data scientist
- information manager
- machine learning application developer
- marketing and commerce practitioner
- statistician